Search results for " Projective Space"

showing 10 items of 22 documents

Segre and the Foundations of Geometry: From Complex Projective Geometry to Dual Numbers

2016

In 1886 Corrado Segre wrote to Felix Klein about his intention to study ‘geometrie projective pure’, completing and developing the work of von Staudt. He would continue this research project throughout the whole of his scientific life. In 1889, following a suggestion of Segre, Mario Pieri published his translation of the Geometrie der Lage, and from 1889 to 1890 Segre published four important papers, “Un nuovo campo di ricerche geometriche”, in which he completely developed complex projective geometry, considering new mathematical objects such as antiprojectivities and studying the Hermitian forms from a geometrical point of view with the related ‘hyperalgebraic varieties’. Segre developed …

AlgebraComplex projective spaceProjective spaceErlangen programProjective differential geometryFoundations of geometryPencil (mathematics)Synthetic geometryMathematicsProjective geometry
researchProduct

QUANTIZATION OPERATORS ON QUADRICS

2008

AlgebraGeometric quantizationGeneral MathematicsComplex projective spaceQuantization (signal processing)Geodesic flowHopf fibrationMathematicsKyushu Journal of Mathematics
researchProduct

A note on conjugation involutions on homotopy complex projective spaces

1986

Algebran-connectedPure mathematicsHomotopy categoryGeneral MathematicsComplex projective spaceWhitehead theoremProjective spaceCofibrationQuaternionic projective spaceRegular homotopyMathematicsJapanese journal of mathematics. New series
researchProduct

Area minimizing projective planes on the projective space of dimension 3 with the Berger metric

2016

Abstract We show that, among the projective planes embedded into the real projective space R P 3 endowed with the Berger metric, those of least area are exactly the ones obtained by projection of the equatorial spheres of S 3 . This result generalizes a classical result for the projective spaces with the standard metric.

CollineationComplex projective space010102 general mathematicsMathematical analysisGeneral MedicineFubini–Study metric01 natural sciencesCombinatoricsReal projective line0103 physical sciencesProjective space010307 mathematical physicsProjective plane0101 mathematicsQuaternionic projective spacePencil (mathematics)MathematicsComptes Rendus Mathematique
researchProduct

Partial spreads in finite projective spaces and partial designs

1975

A partial t-spread of a projective space P is a collection 5 p of t-dimensional subspaces of P of the same order with the property that any point of P is contained in at most one element of 50. A partial t-spread 5 p of P is said to be a t-spread if each point of P is contained in an element of 5P; a partial t-spread which is not a spread will be called strictly partial. Partial t-spreads are frequently used for constructions of affine planes, nets, and Sperner spaces (see for instance Bruck and Bose [5], Barlotti and Cofman [2]). The extension of nets to affine planes is related to the following problem: When can a partial t-spread 5 ~ of a projective space P be embedded into a larger part…

CombinatoricsCollineationBlocking setGeneral MathematicsComplex projective spaceProjective spaceProjective planeProjective linear groupQuaternionic projective spaceTwisted cubicMathematicsMathematische Zeitschrift
researchProduct

A comparison theorem for the mean exit time from a domain in a K�hler manifold

1992

Let M be a Kahler manifold with Ricci and antiholomorphic Ricci curvature bounded from below. Let ω be a domain in M with some bounds on the mean and JN-mean curvatures of its boundary ∂ω. The main result of this paper is a comparison theorem between the Mean Exit Time function defined on ω and the Mean Exit Time from a geodesic ball of the complex projective space ℂℙ n (λ) which involves a characterization of the geodesic balls among the domain ω. In order to achieve this, we prove a comparison theorem for the mean curvatures of hypersurfaces parallel to the boundary of ω, using the Index Lemma for Submanifolds.

Comparison theoremRiemann curvature tensorGeodesicComplex projective spaceMathematical analysisKähler manifoldCurvaturesymbols.namesakesymbolsMathematics::Differential GeometryGeometry and TopologyAnalysisRicci curvatureMathematicsScalar curvatureAnnals of Global Analysis and Geometry
researchProduct

On t-covers in finite projective spaces

1979

A t-cover of the finite projective space PG(d,q) is a setS of t-dimensional subspaces such that any point of PG(d,q) is contained in at least one element ofS. In Theorem 1 a lower bound for the cardinality of a t-coverS in PG(d,q) is obtained and in Theorem 2 it is shown that this bound is best possible for all positive integers t,d and for any prime-power q.

Discrete mathematicsCollineationComplex projective spaceDuality (projective geometry)Projective spaceGeometry and TopologyProjective planeFano planeQuaternionic projective spaceUpper and lower boundsMathematicsJournal of Geometry
researchProduct

On the level of projective spaces

1987

Discrete mathematicsPure mathematicsCollineationProjective unitary groupGeneral MathematicsComplex projective spaceProjective coverProjective spaceProjective planeQuaternionic projective spacePencil (mathematics)MathematicsCommentarii Mathematici Helvetici
researchProduct

Projective spaces on partially ordered sets and Desargues' postulate

1991

We introduce a generalized concept of projective and Desarguean space where points (and lines) may be of different size. Every unitary module yields an example when we take the 1-and 2-generated submodules as points and lines. In this paper we develop a method of constructing a wide range of projective and Desarguean spaces by means of lattices.

Discrete mathematicsPure mathematicsProjective harmonic conjugateCollineationComplex projective spaceProjective spaceGeometry and TopologyProjective planeQuaternionic projective spaceNon-Desarguesian planeProjective geometryMathematicsGeometriae Dedicata
researchProduct

Embedding Locally Projective Planar Spaces Into Projective Spaces

1988

We shall show that a 3-dimensional locally projective planar space of finite order n can be embedded into a 3-dimensional projective space of order n, if it has at least n 3 points.

Discrete mathematicsPure mathematicsReal projective lineCollineationProjective unitary groupComplex projective spaceProjective spaceProjective planeQuaternionic projective spacePencil (mathematics)Mathematics
researchProduct